Competitive Deprotonation of 2-Hydrogen vs. 8-Hydrogen in Zwitterionic Purines

By JOHN L. WONG* and JOHN H. KECK, JR.

(Department of Chemistry, University of Louisville, Louisville, Kentucky 40208)

Summary The generality and rates of the competitive deprotonations of the 2-vs. the 8-hydrogen in zwitterionic purines are shown and a mechanism is proposed.

ISOTOPIC hydrogen exchange at the 8-position of purines via a carbanion intermediate¹ is a reaction of biological significance which indicates that C-8 is a nucleophilic centre in purine nucleosides. Thus, the report by Bergmann *et al.*² that only the 2-hydrogen of 3-methylhypoxanthine exchanged in D₂O at 70–85° is unique and interesting. We report now the generality of this purine 2-hydrogen deprotonation and propose a mechanism to account for the competitive exchanges of the 2- and 8-hydrogen atoms in these compounds.

Deprotonations were studied in D_2O at pD 6—7 in a sealed tube heated at 100°C, and the exchanges were followed by ¹H n.m.r. technique. The Table shows the pseudo-first-order rate constants for the 2- and 8-proton exchange in three groups of purine compounds, the hypoxanthines, 6-mercaptopurines, and adenines. The hypoxanthines were stable throughout this treatment. 6-Mercaptopurine and the 1-methyl derivative decomposed at a rate slower than that of 8-H exchange but faster than that of 2-deprotonation; hence the latter was not determined directly. Since hydrolysis of 1-methyladenine preceeded any carbon deuteriation, it is not included in the Table.

Notable conclusions are (i) deuteriation at the 2-position of a purine is significant $(k_{obs} ca. 10^{-5} s^{-1})$ only with potential zwitterionic structures, e.g. (I) and (II), (ii) the 1-methyl group exerts a mildly rate-enhancing effect on both the 2- and 8-deprotonation, and (iii) the 3-methyl group leads to a rapid increase of the rate of deprotonation of the 2-hydrogen with concommitant depression of that of the 8-hydrogen, thus resulting in a dramatic increase of the

R=H or Me

TABLE. Rates of deuteriation at 100°

		8ª	k/s ⁻¹		
	2-H	8-H	2-Position	8-Position	k(2-H)/k(8-H)
Hypoxanthine ^{b,f}	8.42	8.51	$9.75 imes10^{-6}$	$2.80 imes10^{-4}$	0.035
1-Methylhypoxanthine ^b	8.60	8.50	$1.16 imes10^{-5}$	$3.72 imes10^{-4}$	0.031
3-Methylhypoxanthine ^b	8.67	8.57	$2{\cdot}22$ $ imes10^{-3}$	$2.04 imes10^{-5}$	109.0
6-Methoxypurine 3-oxide ^b	8.86	8.64	$6.85 imes10^{-6}$	$1.08 imes10^{-5}$	0.635
6-Mercaptopurine ^c	8.28	8.43	$<\!1{\cdot}13 imes10^{-6,e}$	$1.30 imes10^{-5}$	< 0.09
1-Methyl-6-mercaptopurine ^c	8.63	8.43	${<}1{\cdot}30 imes10^{-7}$, e	$1.38 imes10^{-5}$	< 0.01
3-Methyl-6-mercaptopurine ^o	9· 3 2	8.60	$2{\cdot}20 imes10^{-4}$	$6{\cdot}48 imes10^{-7}$	340.0
Adenine ^d	8.20	8.17	$1.72 imes10^{-7}$	$1 \cdot 10 \times 10^{-4}$	0.001
3-Methyladenine ^b	8· 3 0	8.07	$2{\cdot}51 imes10^{-5}$	$5\cdot58 imes10^{-7}$	45 ·0

^a From internal sodium 3-(trimethylsilyl) propanesulphonate. Assignments are made according to J. R. Fox, Ph.D. Thesis, University of Illinois, Urbana, Illinois, 1965. ^b 0-1M Solution of the purine compound in D₂O. pD of all solutions are in the range 6—7. ^c In (CD₃)₂SO-D₂O (2:1). ^d J. A. Elvidge, J. R. Jones, and C. O'Brien, *Chem. Comm.*, 1971, 394, extrapolated from k (detritiation; 85°) using E = 22.3 kcal mol⁻¹. ^e Rate of decomposition, hence the rate of exchange is less than this rate. ^f In (CD₃)₂SO-D₂O (2:1) solution at 100°, k/s^{-1} for the 2- and 8-position are respectively 6.95×10^{-7} and 1.84×10^{-5} , k (2-H)/k (8-H) = 0.038.

relative rate of 2-vs. 8-deprotonation by many orders of magnitude.

We^{3a} and others^{3b} have shown that deuteriation of the 2-, 4-, and 5-position of imidazoles in D₂O (pD 0-12) proceeds via a carbanionic mechanism occurring on the conjugate acid species. The same mechanism has been proposed for the 8-exchange of several 6-substituted purines by Maeda et al.^{1a} and Olson et al.^{1b} The Scheme illustrates this deprotonation mechanism for the 2- and 8-hydrogen of the zwitterionic purines. Similar zwitterionic structures have been postulated by Beak et al.⁴ to explain the hydrogen deuterium exchange at the 2-position of an N-methyl-4pyrimidone and a 1,3-dimethyl-4-pyrimidonium salt. Thus, N-3 or N-7 deuteriation leads to the respective conjugate acid species for 2- and 8-deprotonation of (I). Since the basicity of N-7 and N-3 of (I) is enhanced when R is Me rather than H, the greater facility of forming the necessary conjugate acid species should yield a higher k_{obs} of exchange of 1-methylhypoxanthine than that of hypoxanthine. In

comparing the 3-methylhypoxanthine zwitterionic form (IIa) with (I), the basicity of N-7 in (IIa), on account of the direct attachment of the quaternized N-3 to the imidazole ring, must be significantly depressed relative to N-7 in (I). Conversely, N-1 in (IIa), being adjacent to the 6-oxy anion, should be much more basic than N-3 of (I). The combined effects of the N-3-quaternized structure (IIa) are that the $k_{\rm obs}$ of 2-deprotonation is enhanced while that of 8-deprotonation is depressed. Similar mechanisms appear to prevail for the deprotonation of the 3-methyl derivatives of 6-mercaptopurine (IIb) and adenine (IIc). For 6-methoxypurine N-oxide, the N-oxide deactivation of N-7 is expected to be less than for a genuine quaternary N-3. However, the activation of N-1 due to the more remote and less basic N-3-oxide anion is also less pronounced, hence a more subdued relative rate was obtained.

(Received, 6th May 1974; Com. 520.)

¹ (a) M. Maeda and M. Saneyoshi, Chem. Pharm. Bull, Japan, 1971, 19, 1641; (b) M. Olson and J. Mercado, Biochem., 1972, 11, 1235.

² F. Bergmann and Z. Neiman, Chem. Comm., 1969, 992.
³ (a) J. L. Wong and J. H. Keck, Jr., J. Org. Chem., 1974, 39, 2398; (b) J. D. Vaughan, Z. Mughrabi, and E. C. Wu, J. Org. Chem., 1970, 35, 1141.

⁴ P. Beak and E. M. Monroe, J. Org. Chem., 1969, 34, 589.